

FIBRILLAZIONE ATRIALE NELLO SCOMPENSO CARDIACO. QUANDO RICORRERE ALL'ABLAZIONE.

Riccardo Cappato

Humanitas Clinical & Research Center Dipartimento di Scienze Biomediche Humanitas University, Rozzano - MI

Disclosure Statement of Financial Interest

- <u>Consultant to</u>: Boston Scientific; Medtronic; St. Jude; Biosense Webster; ELA Sorin; Boehringer Ingelheim; Bayer HealthCare; Abbott; Pfizer
- <u>Speaker's Bureau</u>: Boston Scientific; Medtronic; St. Jude; Biosense Webster; BARD; Sanofi; Boehringer Ingelheim; Bayer HealthCare; Abbott
- <u>Investigator</u>: Medtronic; Biosense Webster; Sanofi; Cameron Health, BARD; Bayer HealthCare; Abbott; Pfizer
- <u>Grants:</u> Boston Scientific; Medtronic; St. Jude; Biosense Webster; BARD; ELA Sorin
- <u>Equity and Intellectual Property Rights:</u> Cameron Health, Atacor Inc.

• CHF and AF are not a specific disease

- CHF and AF are not a specific disease
- Rather, they represent the common final evolution of several clinical and electrical conditions

- CHF and AF are not a specific disease
- Rather, they represent the common final evolution of several clinical and electrical conditions
- As a consequence, histopathological and electrophysiological substrates may differ considerably among patients

• Clinical syndrome characterized by

- Clinical syndrome characterized by
 - typical symptoms (e.g. breathlessness, ankle swelling and fatigue)

- Clinical syndrome characterized by
 - typical symptoms (e.g. breathlessness, ankle swelling and fatigue)
 - that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary cracklers and peripheral oedema)

- Clinical syndrome characterized by
 - typical symptoms (e.g. breathlessness, ankle swelling and fatigue)
 - that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary cracklers and peripheral oedema)
 - caused by structural and/or functional cardiac abnormality

- Clinical syndrome characterized by
 - typical symptoms (e.g. breathlessness, ankle swelling and fatigue)
 - that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary cracklers and peripheral oedema)
 - caused by structural and/or functional cardiac abnormality,
 - resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress

- Clinical syndrome characterized by
 - typical symptoms (e.g. breathlessness, ankle swelling and fatigue)
 - that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary cracklers and peripheral oedema)
 - caused by structural and/or functional cardiac abnormality,
 - resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress

- Clinical syndrome characterized by
 - typical symptoms (e.g. breathlessness, ankle swelling and fatigue)
 - that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary cracklers and peripheral oedema)
 - caused by structural and/or functional cardiac abnormality,
 - resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress

not by a reduced ejection fraction!

FOUNDATION

AF in Pts with CHF: When to Perform Catheter Ablation? Mechanisms of atrial fibrillation

AF in Pts with CHF: When to Perform Catheter Ablation? Mechanisms of atrial fibrillation

AF in Pts with CHF: When to Perform Catheter Ablation? Mechanisms of atrial fibrillation

perpetuation??????

• Combining AF and CHF in a reproducible model for prescription of therapy delivery represents an oversimplification

Fibrillazione Atriale nello Scompenso Cardiaco: Quando Ricorrere alla Ablazione Transcatetere?

Fibrillazione Atriale nello Scompenso Cardiaco: Quando Ricorrere alla Ablazione Transcatetere?

Quale Fibrillazione Atriale? Quale Scompenso Cardiaco?

Fibrillazione Atriale nello Scompenso Cardiaco: Quando Ricorrere alla Ablazione Transcatetere?

Quale Fibrillazione Atriale? Quale Scompenso Cardiaco?

Quale Tecnica di Ablazione?

Rationale for AF Ablation in CHF

AF in Pts with CHF: When to Perform Catheter Ablation? Rationale for AF Ablation in CHF

• AF has proven as an independent predictor of outcome in patients with CHF

AF in Pts with CHF: When to Perform Catheter Ablation? Rationale for AF Ablation in CHF

- AF has proven as an independent predictor of outcome in patients with CHF
- Strategies aimed at restoring and maintaining sinus rhythm over time may contribute to prolong patient survival

AF in Pts with CHF: When to Perform Catheter Ablation? AF-CHF: secondary endpoints

AF-CHF

AF in Pts with CHF: When to Perform Catheter Ablation? AF-CHF: secondary endpoints

Negative inotropism by AAAs!

Talajic M, et al, 2010

AF-CHF

AF in Pts with CHF: When to Perform Catheter Ablation? Ablation technique

AF in Pts with CHF: When to Perform Catheter Ablation? Ablation technique

Study (year)	Patients (n)	Mean EF	Mean LA size	Freedom from AF*	Ref.
Chen <i>et al.</i> (2004)	94	36	4.7	73	[33]
Hsu <i>et al.</i> (2004)	58	35	5	69	[34]
Tondo <i>et al.</i> (2006)	40	33	4.8	62	[35]
Gentlesk et al. (2007)	53	43	NA	90 [‡]	[36]
Khan <i>et al.</i> (2008)	41	27	4.9	71	[40]

*Freedom from AF without the use of antiarrhythmic drugs.

^{*}No atrial fibrillation with or without antiarrhythmic medication or greater than 90% reduction in AF burden.

AF: Atrial fibrillation; EF: Ejection fraction; LA: Left atrium; NA: Not applicable.

AF in Pts with CHF: When to Perform Catheter Ablation? Ablation technique

Study (year)	Patients (n)	Mean EF	Mean LA size	Freedom from AF*	Ref.
Chen <i>et al.</i> (2004)	94	36	4.7	73	[33]
Hsu <i>et al.</i> (2004)	58	35	5	69	[34]
Tondo <i>et al.</i> (2006)	40	33	4.8	62	[35]
Gentlesk et al. (2007)	53	43	NA	90 [‡]	[36]
Khan <i>et al.</i> (2008)	41	27	4.9	71	[40]

*Freedom from AF without the use of antiarrhythmic drugs.

^{*}No atrial fibrillation with or without antiarrhythmic medication or greater than 90% reduction in AF burden.

AF: Atrial fibrillation; EF: Ejection fraction; LA: Left atrium; NA: Not applicable.

Marrouche et al, 2018

Marrouche et al, 2018

Characteristic	Treatm	ent Type
	Ablation (N=179)	Medical Therapy (N=184)
Age — yr		
Median	64	64
Range	56-71	56-73.5
Male sex — no. (%)	156 (87)	155 (84)
Body-mass index†		
Median	29.0	29.1
Range	25.9-32.2	25.9-32.3
New York Heart Association class — no./total no. (%)		
1	20/174 (11)	19/179 (11)
11	101/174 (58)	109/179 (61)
111	50/174 (29)	49/179 (27)
IV	3/174 (2)	2/179 (1)

Characteristic	Treatment Type						
	Ablation (N=179)	Medical Therapy (N=184)					
Cause of heart failure — no. (%) ‡							
Ischemic	72 (40)	96 (52)					
Nonischemic.	107 (60)	88 (48)					
Type of atrial fibrillation — no. (%)							
Paroxysmal	54 (30)	64 (35)					
Persistent	125 (70)	120 (65)					
Long-standing persistent (duration >1 year)	51 (28)	55 (30)					
Left atrial diameter							
Total no. of patients evaluated	162	172					
Median — mm	48.0	49.5					
Interquartile range — mm	45.0-54.0	5.0-55.0					
Left ventricular ejection fraction							
Total no. of patients evaluated	164	172					
Median — %	32.5	31.5					
Interquartile range — %	25.0-38.0	27.0-37.0					

Table 2. Primary and Secondary Clinical End Points.*											
End Point	Ablation (N = 179)	Medical Therapy (N=184)	Hazard Ratio (95% Cl)	P Val	ue						
					Log-Rank Test						
number (percent)											
Primary†	51 (28.5)	82 (44.6)	0.62 (0.43–0.87)	0.007	0.006						
Secondary											
Death from any cause	24 (13.4)	46 (25.0)	0.53 (0.32–0.86)	0.01	0.009						
Heart-failure hospitalization	37 (20.7)	66 (35.9)	0.56 (0.37-0.83)	0.004	0.004						
Cardiovascular death	20 (11.2)	41 (22.3)	0.49 (0.29–0.84)	0.009	0.008						
Cardiovascular hospitalization	64 (35.8)	89 (48.4)	0.72 (0.52–0.99)	0.04	0.04						
Hospitalization for any cause	114 (63.7)	122 (66.3)	0.99 (0.77–1.28)	0.96	0.96						
Cerebrovascular accident	5 (2.8)	11 (6.0)	0.46 (0.16–1.33)	0.15	0.14						

Table S1. Characteristics of the Primary Analysis Patient Population at Enrollment

Characteristic	Treatment of Atrial Fibrillation							
	Ablation group (179 patients)	Pharmacological group (184 patients)						
[†] Left ventricular ejection fraction – %	29.0 (25.0-32.0)	30.0 (25.0-32.0)						
Medication	n=179	n=183						
ACE-inhibitor or ARB – no. (%)	168 (94%)	166 (91%)						
Beta-blocker – no. (%)	164 (92%)	174 (95%)						
Diuretics including spironolactone – no. (%)	170 (95%, vs. 93%*)	168 (92%, vs. 93%*)						
Digitalis – no. (%)	36 (20%, vs. 18%*) [‡]	56 (31%)‡						
Antiarrhythmic drug (class Ia, Ic, or III) – no. (%)	51 (29%, vs. 32%*)	51 (28%, vs. 31%*)						
Amiodarone – no. (%)	50 (28%, vs. 31%*)	46 (25%), n=182, (vs. 26%*)						

Rationale for AF Ablation in CHF

Rationale for AF Ablation in CHF

Cardiac Index

Rationale for AF Ablation in CHF

Cardiac Index = Cardiac Output Body Surface Area

Table 2. Primary and Secondary Clinical End Points.*										
End Point	Ablation (N = 179)	Medical Therapy (N=184)	Hazard Ratio (95% Cl)	P Val	ue					
					Log-Rank Test					
number (percent)										
Primary†	51 (28.5)	82 (44.6)	0.62 (0.43–0.87)	0.007	0.006					
Secondary										
Death from any cause	24 (13.4)	46 (25.0)	0.53 (0.32–0.86)	0.01	0.009					
Heart-failure hospitalization	37 (20.7)	66 (35.9)	0.56 (0.37–0.83)	0.004	0.004					
Cardiovascular death	20 (11.2)	41 (22.3)	0.49 (0.29–0.84)	0.009	0.008					
Cardiovascular hospitalization	64 (35.8)	89 (48.4)	0.72 (0.52–0.99)	0.04	0.04					
Hospitalization for any cause	114 (63.7)	122 (66.3)	0.99 (0.77–1.28)	0.96	0.96					
Cerebrovascular accident	5 (2.8)	11 (6.0)	0.46 (0.16–1.33)	0.15	0.14					

With a recurrence rate of 50% in the study group at 60 months FU

Table 2. Primary and Secondary Clinical End Points.*										
End Point	Ablation (N = 179)	Medical Therapy (N=184)	Hazard Ratio (95% Cl)	P Val	ue					
					Log-Rank Test					
number (percent)										
Primary†	51 (28.5)	82 (44.6)	0.62 (0.43–0.87)	0.007	0.006					
Secondary										
Death from any cause	24 (13.4)	46 (25.0)	0.53 (0.32–0.86)	0.01	0.009					
Heart-failure hospitalization	37 (20.7)	66 (35.9)	0.56 (0.37–0.83)	0.004	0.004					
Cardiovascular death	20 (11.2)	41 (22.3)	0.49 (0.29–0.84)	0.009	0.008					
Cardiovascular hospitalization	64 (35.8)	89 (48.4)	0.72 (0.52–0.99)	0.04	0.04					
Hospitalization for any cause	114 (63.7)	122 (66.3)	0.99 (0.77–1.28)	0.96	0.96					
Cerebrovascular accident	5 (2.8)	11 (6.0)	0.46 (0.16–1.33)	0.15	0.14					

With a recurrence rate of 50% in the study group at 60 months FU

With 63% of patients in the study group presenting with stable sinus rhythm between 48 and 60 months FU

HU HUMANITAS UNIVERSITY

AF in Pts with CHF: When to Perform Catheter Ablation? Long-term outcome

HUMANITAS UNIVERSITY

HI

AF in Pts with CHF: When to Perform Catheter Ablation? Long-term outcome

Efficacy model for ablation in CASTLE-AF

- Success rates at catheter ablation of persistent and long-standing persistent AF
 - 67% in 1/3 of pts
 - 38% in 1/3 of pts
 - 27% in 1/3 of pts

44% mean success rate in the aggregate population! during 9 months FU!!!

- Role of follow-up in favoring AF recurrences after catheter ablation
- Role of sinus rhythm in determining clinical outcome

Trends in complications of AF ablation

	Overall	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	<i>P</i> Value
Any procedural complications	6.29	5.33	5.53	6.01	7.17	6.32	5.10	6.17	6.66	5.93	6.49	7.48	0.108
In hospitalization death	0.42	0.44	0.55	0.63	0.30	0.61	0.15	0.45	0.53	0.27	0.52	0.47	0.492
Vascular complications	1.53	0.89	0.66	1.16	1.12	0.95	1.31	0.60	0.97	1.02	0.97	1.33	0.500
Postop hemorrhage	3.38	1.78	2.54	2.53	2.39	3.38	2.77	3.13	3.52	3.75	3.46	4.90	<0.001
Postop hemorrhage requiring transfusion	0.58	0.30	0.22	0.32	0.30	0.61	0.34	0.45	0.87	0.65	0.44	1.03	0.020
Vascular complications including	1.01	0.30	0.11	0.21	0.22	0.26	0.34	0.05	0.10	0.03	0.04	0.04	0.060
Cardiac complications	2.54	1.63	1.66	1.37	2.69	2.42	1.90	1.69	2.90	2.90	3.06	3.53	< 0.001
latrogenic cardiac complications	1.18	1.33	0.88	0.63	1.19	1.13	0.83	0.90	1.54	1.33	0.93	1.76	0.050
Pericardial complications	1.52	0.74	0.44	0.63	1.49	0.87	1.31	1.00	1.83	1.84	2.14	2.24	<0.001
Myocardial infarction	0.37	0.30	0.55	0.32	0.60	0.69	0.29	0.30	0.34	0.37	0.32	0.26	0.650
Requiring open heart surgery	0.28	0.44	0.22	0.11	0.07	0.09	0.24	0.30	0.24	0.24	0.36	0.47	0.460
Respiratory complications	1.3	1.48	1.66	1.27	1.79	1.21	1.12	1.59	1.79	1.16	1.09	0.77	0.109
Pneumothorax	0.39	0.59	0.66	0.63	0.82	0.52	0.44	0.50	0.29	0.31	0.24	0.04	0.020
Postop respiratory failure	0.77	0.74	0.88	0.53	0.75	0.61	0.49	0.90	1.16	0.68	0.85	0.73	0.575
Other iatrogenic respiratory complications	0.18	0.15	0.33	0.11	0.30	0.09	0.24	0.20	0.43	0.20	0.00	0.00	0.030
Neurological complications (postop stroke/TIA)	1.02	0.89	1.11	1.79	1.57	1.13	0.68	1.39	0.53	0.78	0.93	1.20	0.013
Postop infectious complications	0.38	0.15	0.11	0.21	0.45	0.43	0.29	0.50	0.72	0.24	0.40	0.43	0.235

AF indicates atrial fibrillation; Postop, postoperative; and TIA, transient ischemic attack.

Trends in complications of AF ablation

	Overall	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	P Value
Any procedural complications	6.29	5.33	5,53	6.01	7.17	6.32	5.10	6.17	6.66	5.93	6.49	7.48	0.108
In hospitalization death	0.42	0.44	0.55	0.63	0.30	0.61	0.15	0.45	0.53	0.27	0.52	0.47	0.492
Vascular complications	1.53	0.89	0.66	1.16	1.12	0.95	1.31	0.60	0.97	1.02	0.97	1.33	0.500
Postop hemorrhage	3.38	1.78	2.54	2.53	2.39	3.38	2.77	3.13	3.52	3.75	3.46	4.90	< 0.001
Postop hemorrhage requiring transfusion	0.58	0.30	0.22	0.32	0.30	0.61	0.34	0.45	0.87	0.65	0.44	1.03	0.020
Vascular complications including	1.01	0.30	0.11	0.21	0.22	0.26	0.34	0.05	0.10	0.03	0.04	0.04	0.060
Cardiac complications	2.54	1.63	1.66	1.37	2.69	2.42	1.90	1.69	2.90	2.90	3.06	3.53	< 0.001
latrogenic cardiac complications	1.18	1.33	0.88	0.63	1.19	1.13	0.83	0.90	1.54	1.33	0.93	1.76	0.050
Pericardial complications	1.52	0.74	0.44	0.63	1.49	0.87	1.31	1.00	1.83	1.84	2.14	2.24	<0.001
Myocardial infarction	0.37	0.30	0.55	0.32	0.60	0.69	0.29	0.30	0.34	0.37	0.32	0.26	0.650
Requiring open heart surgery	0.28	0.44	0.22	0.11	0.07	0.09	0.24	0.30	0.24	0.24	0.36	0.47	0.460
Respiratory complications	1.3	1.48	1.66	1.27	1.79	1.21	1.12	1.59	1.79	1.16	1.09	0.77	0.109
Pneumothorax	0.39	0.59	0.66	0.63	0.82	0.52	0.44	0.50	0.29	0.31	0.24	0.04	0.020
Postop respiratory failure	0.77	0.74	0.88	0.53	0.75	0.61	0.49	0.90	1.16	0.68	0.85	0.73	0.575
Other iatrogenic respiratory complications	0.18	0.15	0.33	0.11	0.30	0.09	0.24	0.20	0.43	0.20	0.00	0.00	0.030
Neurological complications (postop stroke/TIA)	1.02	0.89	1.11	1.79	1.57	1.13	0.68	1.39	0.53	0.78	0.93	1.20	0.013
Postop infectious complications	0.38	0.15	0.11	0.21	0.45	0.43	0.29	0.50	0.72	0.24	0.40	0.43	0.235

AF indicates atrial fibrillation; Postop, postoperative; and TIA, transient ischemic attack.

Trends in complications of AF ablation

In paroxysmal AF!!

	Overall	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	<i>P</i> Value
Any procedural complications	6.29	5.33	5.53	6.01	7.17	6.32	5.10	6.17	6.66	5.93	6.49	7.48	0.108
In hospitalization death	0.42	0.44	0.55	0.63	0.30	0.61	0.15	0.45	0.53	0.27	0.52	0.47	0.492
Vascular complications	1.53	0.89	0.66	1.16	1.12	0.95	1.31	0.60	0.97	1.02	0.97	1.33	0.500
Postop hemorrhage	3.38	1.78	2.54	2.53	2.39	3.38	2.77	3.13	3.52	3.75	3.46	4.90	<0.001
Postop hemorrhage requiring transfusion	0.58	0.30	0.22	0.32	0.30	0.61	0.34	0.45	0.87	0.65	0.44	1.03	0.020
Vascular complications including	1.01	0.30	0.11	0.21	0.22	0.26	0.34	0.05	0.10	0.03	0.04	0.04	0.060
Cardiac complications	2.54	1.63	1.66	1.37	2.69	2.42	1.90	1.69	2.90	2.90	3.06	3.53	<0.001
latrogenic cardiac complications	1.18	1.33	0.88	0.63	1.19	1.13	0.83	0.90	1.54	1.33	0.93	1.76	0.050
Pericardial complications	1.52	0.74	0.44	0.63	1.49	0.87	1.31	1.00	1.83	1.84	2.14	2.24	<0.001
Myocardial infarction	0.37	0.30	0.55	0.32	0.60	0.69	0.29	0.30	0.34	0.37	0.32	0.26	0.650
Requiring open heart surgery	0.28	0.44	0.22	0.11	0.07	0.09	0.24	0.30	0.24	0.24	0.36	0.47	0.460
Respiratory complications	1.3	1.48	1.66	1.27	1.79	1.21	1.12	1.59	1.79	1.16	1.09	0.77	0.109
Pneumothorax	0.39	0.59	0.66	0.63	0.82	0.52	0.44	0.50	0.29	0.31	0.24	0.04	0.020
Postop respiratory failure	0.77	0.74	0.88	0.53	0.75	0.61	0.49	0.90	1.16	0.68	0.85	0.73	0.575
Other iatrogenic respiratory complications	0.18	0.15	0.33	0.11	0.30	0.09	0.24	0.20	0.43	0.20	0.00	0.00	0.030
Neurological complications (postop stroke/TIA)	1.02	0.89	1.11	1.79	1.57	1.13	0.68	1.39	0.53	0.78	0.93	1.20	0.013
Postop infectious complications	0.38	0.15	0.11	0.21	0.45	0.43	0.29	0.50	0.72	0.24	0.40	0.43	0.235

AF indicates atrial fibrillation; Postop, postoperative; and TIA, transient ischemic attack.

What to do?

• Identify the causes of CHF and calculate cardiac index (symptoms and signs might be secondary to fast rate)

- Identify the causes of CHF and calculate cardiac index (symptoms and signs might be secondary to fast rate)
- Identify the type of AF (paroxysmal, persistent, permanent)

- Identify the causes of CHF and calculate cardiac index (symptoms and signs might be secondary to fast rate)
- Identify the type of AF (paroxysmal, persistent, permanent)
- Consider patients with LA max TD \leq 55 mm

- Identify the causes of CHF and calculate cardiac index (symptoms and signs might be secondary to fast rate)
- Identify the type of AF (paroxysmal, persistent, permanent)
- Consider patients with LA max TD \leq 55 mm
- Cardiovert the patient to dissect out the contributing role of AF in patient symptoms and impaired LV EF

- Identify the causes of CHF and calculate cardiac index (symptoms and signs might be secondary to fast rate)
- Identify the type of AF (paroxysmal, persistent, permanent)
- Consider patients with LA max TD \leq 55 mm
- Cardiovert the patient to dissect out the contributing role of AF in patient symptoms and impaired LV EF
- Apply PV isolation as standard technique for ablation

- Identify the causes of CHF and calculate cardiac index (symptoms and signs might be secondary to fast rate)
- Identify the type of AF (paroxysmal, persistent, permanent)
- Consider patients with LA max TD \leq 55 mm
- Cardiovert the patient to dissect out the contributing role of AF in patient symptoms and impaired LV EF
- Apply PV isolation as standard technique for ablation
- Ensure continuity and stability of isolating lesions

• Identification of a combined universal model of AF in CHF represents an over(over over over...)-simplification (a wishful thinking!)

- Identification of a combined universal model of AF in CHF represents an over(over over over...)-simplification (a wishful thinking!)
- Therefore, such model is not amenable to a universal strategy for catheter-based restitution to stable sinus rhythm

- Identification of a combined universal model of AF in CHF represents an over(over over over...)-simplification (a wishful thinking!)
- Therefore, such model is not amenable to a universal strategy for catheter-based restitution to stable sinus rhythm
- Studies in the literature provide elusive methodology and unrealistic data to be extrapolated to a general population

- Identification of a combined universal model of AF in CHF represents an over(over over over...)-simplification (a wishful thinking!)
- Therefore, such model is not amenable to a universal strategy for catheter-based restitution to stable sinus rhythm
- Studies in the literature provide elusive methodology and unrealistic data to be extrapolated to a general population
- Too much enthusiasm may lead to an excess procedural risk exposure

- Identification of a combined universal model of AF in CHF represents an over(over over over...)-simplification (a wishful thinking!)
- Therefore, such model is not amenable to a universal strategy for catheter-based restitution to stable sinus rhythm
- Studies in the literature provide elusive methodology and unrealistic data to be extrapolated to a general population
- Too much enthusiasm may lead to an excess procedural risk exposure
- Selected patients (at best those with tachymyopathy) may be considered for AF ablation

What to do?

- Identify the causes of CHF and calculate cardiac index (symptoms and signs might be secondary to fast rate)
- Identify the type of AF (paroxysmal, persistent, permanent)
- Consider patients with LA max TD \leq 55 mm
- Cardiovert the patient to dissect out the contributing role of AF in patient symptoms and impaired LV EF
- Apply PV isolation as standard technique for ablation
- Ensure continuity and stability of isolating lesions

$$CI = \frac{CO}{BSA}$$

$$CI = \frac{CO}{BSA} = \frac{SV \times HR}{BSA}$$

$$CI = \frac{CO}{BSA} = \frac{SV \times HR}{BSA} = 2.6 - 4.2 L/min$$

Thirty Years of Evidence on the Efficacy of Drug Treatments for Chronic Heart Failure With Reduced Ejection Fraction A Network Meta-Analysis

Table 1. Etiology Of Atrial Fibrillation.

Cardiac

- Ischemic heart disease
- Valvular disease
- Hypertension
- Congestive heart failure
- Sick sinus syndrome
- Pericarditis
- Infiltrative heart disease
- Cardiomyopathy
- Cardiac surgery
- Myocarditis
- Congenital heart disease

Non-cardiac

- Pulmonary embolism
- Idiopathic
- Medication noncompliance
- Thyroid disease
- Holiday heart syndrome
- Medication use
- Electrocution
- Other pulmonary disease
- Chest trauma
- Hypokalemia
- Hypomagnesemia
- Hypothermia

AF in Pts with CHF: When to Perform Catheter Ablation? Heart failure: definition

 Clinical syndrome characterized by typical symptoms (e.g. breathlessness, ankle swelling and fatigue) that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary cracklers and peripheral oedema) caused by and/or functional cardiac abnormality, resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress

AF in Pts with CHF: When to Perform Catheter Ablation? AF-CHF: secondary endpoints

% of time in sinus rhythm

Talajic M, et al, 2010

AF-CHF

AF in Pts with CHF: When to Perform Catheter Ablation? AF-CHF: secondary endpoints

Distribution of time in sinus rhythm

В

% of time in sinus rhythm

Talajic M, et al, 2010

AF-CHF

AF in Pts with CHF: When to Perform Catheter Ablation? Ablation technique

Study (year)	Patients (n)	Mean EF	Mean LA size	Freedom from AF*	Ref.
Chen <i>et al.</i> (2004)	94	36	4.7	73	[33]
Hsu <i>et al.</i> (2004)	58	35	5	69	[34]
Tondo <i>et al.</i> (2006)	40	33	4.8	62	[35]
Gentlesk et al. (2007)	53	43	NA	90 [‡]	[36]
Khan <i>et al.</i> (2008)	41	27	4.9	71	[40]

*Freedom from AF without the use of antiarrhythmic drugs.

^{*}No atrial fibrillation with or without antiarrhythmic medication or greater than 90% reduction in AF burden.

AF: Atrial fibrillation; EF: Ejection fraction; LA: Left atrium; NA: Not applicable.

AF in Pts with CHF: When to Perform Catheter Ablation? Ablation technique

Study (year)	Patients (n)	Mean EF	Mean LA size	Freedom from AF*	Ref.
Chen <i>et al.</i> (2004)	94	36	4.7	73	[33]
Hsu <i>et al.</i> (2004)	58	35	5	69	[34]
Tondo <i>et al.</i> (2006)	40	33	4.8	62	[35]
Gentlesk et al. (2007)	53	43	NA	90 [‡]	[36]
Khan <i>et al.</i> (2008)	41	27	4.9	71	[40]

*Freedom from AF without the use of antiarrhythmic drugs.

^{*}No atrial fibrillation with or without antiarrhythmic medication or greater than 90% reduction in AF burden.

AF: Atrial fibrillation; EF: Ejection fraction; LA: Left atrium; NA: Not applicable.

